Multi-wavelength follow-up of ANTARES neutrino alerts
Abstract
Transient sources are often associated with the most violent phenomena in the Universe, where the acceleration of hadrons may occur. Such sources include gamma-ray bursts (GRBs), active galactic nuclei (AGN) or core-collapse supernovae (CCSNe), and are promising candidates for the production of high energy cosmic rays and neutrinos. The ANTARES telescope, located in the Mediterranean sea, aims at detecting these high energy neutrinos, which could reveal the presence of a cosmic ray accelerator. However, to enhance the sensitivity to transient sources, a method based on multi-wavelength follow-up of neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes and the Swift-XRT with a delay of only a few seconds after a neutrino detection. The telescopes start an observation program of the corresponding region of the sky in order to detect a possible electromagnetic counterpart to the neutrino event. The work presented in this thesis covers the development and implementation of an optical image analysis pipeline, as well as the analysis of optical and X-ray data to search for fast transient sources, such as GRB afterglows, and slowly varying transient sources, such as CCSNe.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- October 2015
- Bibcode:
- 2015PhDT.......172M
- Keywords:
-
- electromagnetic follow-up;
- image analysis;
- gamma-ray bursts